Multiresolution Information Archival and Analysis System

Donald Fussell
Al Bovik
Melba Crawford
Harrick Vin

The University of Texas at Austin

NASA EOSDIS Technology Transfer Workshop -February 1996

Managing the Quality of Query Results

- The need for variable quality in EOSDIS
 - The nature of the data: very large number of voluminous objects
 - The consequent high cost of storage, transmission, and processing
 - Diversity in users' quality requirements
 - Diversity in users' storage, transmission and processing capabilities
- Multiresolution as a means of managing quality

Objective

Design and implement an end-to-end architecture for distributed EOSDIS applications

Key Challenge: Managing Heterogeneity

- Computing: ranging from high-end workstations to hand-held devices
- Communication: ranging from high-bandwidth ATM networks to low-bandwidth wireless environments
- Data type and formats (e.g., various compression algorithms)

Research Horizon

- Design and implement a multiresolution multimedia file system
- Develop algorithms and protocols for efficient transmission of multimedia data over networks
- Design and implement OS and transport protocol related services at the end-station
- Design and implement a tool for accessing multiresolution EOSDIS data by by various user communities

Multi-resolution Multimedia File System

- Supports efficient storage and retrieval of multiple resolution levels of each object (containing images, video, etc.)
- Supports periodic and aperiodic real-time, as well as non real-time requests
- Understands and provides various levels of Quality of Service (QoS) to clients

Key Features

- Integrated data management
 - Data type specific:
 - Storage structures (e.g., i-nodes)
 - Placement and retrieval algorithms
 - Failure recovery mechanisms
- Scheduling algorithms:
 - Minimize response times for non real-time requests
 - Meet the performance requirements of real-time requests
- Adapts QoS to changes in resource availability
- Design principle: achieve efficient system design by exploiting the semantics of data

Failure Recovery in Disk Arrays

- Disk mirroring
 - 100% storage space overhead
- Parity encoding: Recovery using redundant parity information
 - balanced system load prior to failure => 100% increase in load on surviving disks after failure
 - Prevent saturation => low utilization in fault-free state
 - Declustered parity reduces overhead to (G-1)/(C-1) where G:
 parity group size and C: cluster size

disk 1		disk 4	
	M0.2	M0.3	
	M1.2	P1	
	P2	M2.2	
	M3.1	M3.2	
	M4.1	M4.2	

Failure Recovery in Multimedia Servers

Observations:

- Images are inherently redundant
- Human perception is tolerant to minor distortions in visual presentations

• Approach:

 Improve the performance by exploiting properties of media streams

Addressing Scalability

- Clustered file system architecture
 - Cluster: collection of nodes connected by a network
- Developed techniques for:
 - Replicating and/or distributing the storage of each object across multiple nodes
 - Tolerating disk and node failures

Implementation Status

- Basic multi-user file system (in user-space) is operational
- Resource reservation and management, as well as failure recovery methods are being implemented
- Experiments with clustered file system are being carried out on an IBM SP-2
- Plan:
 - Complete user-sapce file system implementation by June 1996
 - Migrate it to kernel by December 1996

Network Algorithms and Protocols

- Efficient transmission of compressed imagery over networks
- Key objective: combine multiresolution encoding with prioritized and progressive transmission schemes
- Supports:
 - Recovery from error in transmission (e.g., packet loss) without retransmission
 - Negotiation for appropriate quality of service
 - On-the-fly changes in quality using QoS filters

Status and On-going Work

- Status:
 - Implemented and experimented with efficient techniques for transmitting images compressed usng a DCT-based algorithm
- Ongoing work:
 - Extensions for wavelet- and fractal-based techniques
 - Algorithms and protocols for integrated traffic management
 - Framework for hierarchical resource management

OS and Transport Services

- Quality of Service (QoS) architecture
 - Efficient mechanisms for transport and presentation-level processing
 - Framework for meeting the QoS requirements of applications
- Framework should support:
 - Specification of QoS requirements
 - On-demand composition to adapt to:
 - Resource availability
 - Application requirements

Example: Presentation Processing Engine (PPE)

- Library of configurable compression and image processing modules
- Modules can be dynamically configured to create a presentation processing engine
- Modular architecture
 - Software engineering benefits
 - Possible to incorporate image processing functions to manipulate compressed data => substantial improvement in performance

Distributed Query Interface

- Dynamic user-specified QoS requirements
 - Cost/performance tradeoffs specified as value functions - part of query interface
- Online feedback from storage and transport components for dynamic resolution adjustment
 - Provide best possible quality of data meeting performance constraints
 - Provide required data with best available performance given priority
- Browse dynamically enhanced data

Current Status

- Implementation based on "sandbag" multiresolution data model
- "sandtree" data structure supports aggregate operations and multiresolution image queries efficiently
- Client-server architecture
- Simple value functions direct resolution specification or time bound specification
- Crude system performance estimates

Aspects of "Quality"

- Information detail contained in query results
 - Precision of data values: direct, correlated
 - Density of data points: spatial, temporal, band
 - Membership completeness of data sets
 - Abstraction level of data
- The strength of guarantees on query results
 - Currency
 - Consistency

Methods for EOSDIS

- Issues in choosing a method of generating multiple resolution versions
 - Ease of generation of multiple resolutions
 - Effectiveness of cost reduction: storage, transport, data management
 - Processing algorithm "friendliness" of various resolution versions
- Managing multiple resolution versions
 - Storage of precomputed versions, on-demand computation, customized generation based on usersupplied scripts

Using Multiresolution Versions

- Constructing cost models based on multiresolution
 - Overall cost a function of resolution along each aspect of quality
- Factors in selecting the resolution of result for a given query
 - Direct specification in query, bound on cost, bounds on storage size and delivery time, server load

A Model for Distributed Servers

- Autonomous administration of individual servers
- Information disseminated via query interfaces in servers
- Possible server interactions: propagation and exchange of information
- Absence of global transactions

A Model of Augmented Information Objects

- No global correctness, currency, or consistency management protocol
- Information objects augmented with meta-data
- Basic assumption: information object and associated meta-data were correct together at some point in time
- Correctness, currency and consistency properties of a query result derived from metadata of objects in result set

Definitions of Correctness, Currency, and Consistency

- Correctness with respect to
 - the object being modeled
 - the totality of information servers
 - the answering server
- Currency definitions based on visibility of changes/updates
- Consistency definitions based on duration of simultaneous correctness

Evaluation of the Autonomous Server Model

- Advantages over a traditional DBMS
 - More autonomy for individual servers
 - Reduced protocol overhead in object exchange
 - Higher tolerance of unavailability of servers
- Disadvantages
 - Weaker guarantees on query results

Basic Meta-data Scheme for EOSDIS Servers

- Meta-data for objects:
 - Spatial, temporal and grid information
 - Content description and classification
 - Processing history and available resolutions
- Meta-data for servers:
 - Aggregate object descriptions
 - Meta-data on server capacity and data management parameters

Issues in Meta-data Management for EOSDIS

- Interoperability: Adopting a general format for meta-data
- Multiresolution in meta-data and its effects on search and navigation efficiency
- Partially automated derivation of meta-data hierarchy from object meta-data

Multiresolution Image Analysis

- Goal Develop and apply methods for image analysis which both exploit and test multiresolution datga structures, coding, storage, and transport protocols.
- Focus Classes of approaches which will be required to satisfy operational requirements of EOSDIS data (i.e. retrieval of large data sets and operational data products by multiple users over networks.
- Characteristics of problems included in UT study:
 - Enhancement of multispectral/multitemporal data for visual browsing and analysis
 - Analysis of multiple data sets with different spatial/spectral characteristics
 - Analysis of noisy data requiring identification and possible removal of anomalies
 - Extraction and possible tracking of features
 - Segmentation and classification of imagery

- Specific Project Applications at UT CSR being utilized for system evaluation
 - Image registration (multispectral and SAR data from SPOT, Landsat, ERS-1, SIR-C, Airborne CAMS, JPL AIRSAR)
 - Interpolation of altimetry data for geoid mapping and tracking dynamic topography (GEOSAT, ERS, and TOPEX)
 - Reconstruction of hundreds of daily AVHRR data for vegetation mapping and change detection studies (UT receiving station)
 - Integration of AVHRR and GOES imagery for regional mesoscale meteorological studies (UT HRPT and Stgate of TExas GOES Seaspace/Lockheed systems)
 - Automatic extraction of feature boundaries from full Landsat scenes for fire mapping (25 years of MSS data over W. Australia)
 - Tracking thermal ocean features in AVHRR imagery (UT HRPT station)
 - Landscape simulation for habitat studies
 - Topographic studies (interferometry and stereo combinations from ERS, SIR-C and SPOT imagery)

Multiresolution Analysis Approches

- Multitemporal Image Reconstruction
 - Markov random field spatial model coupled with a time series model implemented within a pyramid structure to reconstruct sequences of hundreds of images (each on the order of 2kx2k)
- Multiresolution Registration
 - Wavelet-based decomposition combined with feature extraction and matching
- Multiresolution Spatial Interpolation
 - Image pyramid combined with adaptive Kalman filter
- Multiresolution Simulation
 - Markov random field model used to simulate large region process, then boundary variation and intraregion characteristics superimposed via pyramid structure
- Feature Extraction and Tracking

The University of Texas at Austin

- Anisotropic diffusion pyramid developed to detect boundaries and track features at multiple resolutions
- Multiresolution Segmentation and Classification
 - Wavelet-based decomposition combined with multiresolution Markov random field model

Multispectral Image Data

Band 1

Band 2

Band 3

Band 4

Band 5

- Images may have high spatial resolution, wide dynamic range, and hundreds of bands
- Data sets are extrmely large, requiring expensive storage and long network transmission times
- Lossless and lossy compression schemes needed

Compression Schemes

LOSSLESS

- Required for archiving and machine vision
- Relies on reduction of entropy of the image
- Achievable compression is low (2:1 typical for single band images)

LOSSY

- Relies on properties of human visual system
- High quality images at high compression ratios are obtainable
- Good for transmission over networks, non-critical applications

Lossless Image Coding

- Typical data has high spectral/spatial redundancy
- Spectral correlation is reduced using the CMT
- Spatial correlation is reduced using DPCM
- Variable-length coding approaches entropy bound

Lossy Wavelet Image Coding

Original data

One possible wavelet decomposition

- Image is split into parallel frequency channels
- Natural images are inherently multiresolution
- Human visual system uses frequency channels
- Efficient storage and progressive transmission

Single Band Compression

EPIC coder 37:1

Wavelet coder 37:1

- Efficient wavelet coders exist but for single bands only
- Good visual quality at 30:1 available
- Multispectral data has higher redundancy and will allow higher compresson ratios